Peramalan permintaan tas laptop menggunakan model time series

نویسندگان

چکیده

CV Sportex merupakan usaha mikro, kecil, dan menengah (UMKM) yang bergerak dalam produksi tas ransel, pakaian, laptop. Sistem digunakan oleh adalah make to stock (MTS). Saat ini perencanaan hanya dilakukan berdasarkan perkiraan saja, belum metode tertentu untuk peramalan produk di masa mendatang. Hal tersebut berakibat pada jumlah permintaan stok tidak seimbang, sehingga memungkinkan terjadinya kekurang atau penumpukan produk. Oleh karena itu, dibutuhkan menggunakan beberapa model time series dengan regresi linear exponential smoothing meramalkan Pengumpulan data mengumpulkan laptop selama 12 bulan, selanjutnya analisis didukung aplikasi POM-QM. Dari pengolahan dua metode, yaitu diketahui masing-masing nilai mean square error (MSE) sebesar 5907,034 9299,377 . Maka terbaik diterapkan linear, memperoleh MSE paling kecil.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual analysis using Fourier series transform in Fuzzy time series model

In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...

متن کامل

New optimized model identification in time series model and its difficulties

Model identification is an important and complicated step within the autoregressive integrated moving average (ARIMA) methodology framework. This step is especially difficult for integrated series. In this article first investigate Box-Jenkins methodology and its faults in detecting model, and hence have discussed the problem of outliers in time series. By using this optimization method, we wil...

متن کامل

Model-Based Time Series Classification

We propose MTSC, a filter-and-refine framework for time series Nearest Neighbor (NN) classification. Training time series belonging to certain classes are first modeled through Hidden Markov Models (HMMs). Given an unlabeled query, and at the filter step, we identify the top K models that have most likely produced the query. At the refine step, a distance measure is applied between the query an...

متن کامل

Time Series Cube Data Model

The purpose of this document is to create a data model and its serialization for expressing generic time series data. Already existing IVOA data models are reused as much as possible. The model is also made as generic as possible to be open to new extensions but at the same time closed for modifications. This enables maintaining interoperability throughout different versions of the data model. ...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal Industrial Servicess

سال: 2022

ISSN: ['2461-0623', '2461-0631']

DOI: https://doi.org/10.36055/jiss.v7i2.14326